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On the basis of the linear laws of the thermodynamics of irreversible processes and the law of conservation 
of matter, a system of differential equations is derived for molecular transfer in the presence of n inter- 
related flows of generalized charges. 

The current theory of transfer of generalized charges within a capillary-porous medium makes wide use of the 
methods of the thermodynamics of irreversible processes. 

It is well known that the thermodynamics of irreversible processes is based on two principles: the linear law and 
the Onsager reciprocity relation. A large number of irreversible processes is known, the laws of which are expressed 
phenomenologically by linear relations between cause and effect. According to the linear law, the rate I (effect) of ap-  
proach of the system to the equilibrium state is proportional to the thermodynamic motive force X (cause), which in turn 
may be expressed in terms of a potential gradient. Examples are heat conduction, giving heat flux proportional to tem-  
perature gradient ( I = - - ~ g r a d  T) diffusion, giving the flux of a mixture component proportional to concentration 
gradient ( lm=- -2~mgradU)  , Ohm's law, giving current density proportional to potential gradient (I = - - a g r a d q 0 ) ,  etc. 

These linear laws have been the basis for the derivation of the corresponding differential equations (heat conduc- 
tion, diffusion, electrical conduction, etc.) .  

In contrast to the classical situation for transfer of heat, mass of bound substance, electrical charges, e tc . ,  based 
on which the corresponding differential equations were derived, we are now concerned with the use of the thermodynam- 
ics of irreversible processes. 

While previously in the study of transfer of heat, electricity and mass of bound substance, the independent linear 
transfer equations were examined, we now assume the initial transfer equations to be a set of linear Onsager equations, in 
which any given type of transfer is determined by the action of a direct effect and of the concurrent transfer phenomena. 
Mathematically, the effects of superposition are described by additional terms in the basic transfer law (direct effect). 
These linear Onsager equations lead to a system of interdependent differential equations of molecular transfer-to a sys- 
tem of partial differential equations of parabolic type relating to the potential fields of distribution of temperature, 
electricity and mass of bound substance, etc. 

According to the linear law, the flux I i resulting from the action of n generalized forces X k (k ---- 1, 2, �9 . . n) 
is proportional to these forces: 

t~ 

l i =  V LikX k (i-~ 1, 2, . . .  n). (1) 

k = l  

The quantity Lik is called the phenomenological (kinetic) Onsager coefficient. The diagonal coefficients Lkk 
give the transfer intensity of the k-th generalized charge under the action of the like force X k. The coefficients Lik 
when i r k are called entrainment coefficients and are connected with the superposed phenomena. 

The Onsager reciprocity relation establishes that, with appropriate choice of fluxes I i and forces X i, the matrix 
composed of the kinetic coefficients 

Ln L12 . . . .  Lln 

L21 L22 . . . .  L2,~ 

Lnl Ln~ . . . .  L.n 

(2) 

is symmetric, i . e . ,  

Lik = Lki. (3) 

This relation results from microscopic reversibility. 
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For instance, in the case of nonisothermal diffusion and heat conduction within a porous medium, we may write 
[l :- L n X ,  + L~X2 ,  

(4) 
I2 = L21X1 + L2._X2, 

where 11 is the energy (heat) flux; 12 is the mass flux of bound substance. Lo_ l , L,~ establish the relation between the 
superposed phenomena (thermal diffusion, i . e . ,  temperature gradient, causes mass transfer, and diffusion heat conduc-  
tion, i . e . ,  concentration gradient, causes heat transfer). ~ is proportional to the Sorer coefficient, and /e~ to the 
Dufour coefficient. 

The equality of nondiagonal kinetic coefficients Llo " = Le, indicates symmetry between the influence of the dif- 
fusion force on heat flow and the influence of the thermal force on the mass flux. To clarify the quantitative interaction 
of the various fluxes, we shall differentiate the linear equations of system (4) 

-8--~-~ l x ,  = C,2, I, aX,  ].,c, = L2'" (5) 

From the reciprocity relation (3) we obtain 

OI1/OX2 = ( 9 [ ~ / 0 X 1 o  (6) 

The increment of energy (heat) flux, referred to unit increment of kinetic force X 2 (gradient of the bound mass 
distribulion) is equal to the increment of mass flux, referred to unit increment of kinetic force X 1 (temperature gradient). 

To derive the system of differential equations of molecular transfer, we shall make certain assumptions regarding 
the model of the thermodynamic system in which the transfer process occurs. We shall suppose that within an isotropic 
capillary-porons body (conductor), there are n generalized charges. These are transferred under the influence of n gen-  
eralized forcesXt ,  X2, �9 � 9  Xn, whose potentials are U l(x,  g, z, t), U2(x, g, z, t) . . . . . . .  , U n(x, y, z, t). 
Thus, the thermodynamic system is really heterogeneous and is assumed to be continuous, i . e . ,  any volume element of 
the conductor is filled by all n components of the generalized charges. 

We shall write the generalized forces X 1 , X2 . . . .  , Xn in terms of the gradients of the corresponding potentials 

X~ = - -  V Uk - - -  grad U~. 

Under these conditions the linear equations (1) m a y b e  written in the form 

Ile = - -  (Lkl V U1 @ Lk~ V U~ + . . . + Lk~ V Un) 
(7) 

( k =  1, 2, . . .  n). 

Let us examine a volume element of V inside the conducting body (conductor) bounded by the surface S, and divide 
the surface S into m arbitrary parts. Let iX S t be the area of the i-th part of S; then AEki = I k (p],  t) A S i is the 

__'~ Ek ~ = s amount of the k-th generalized charge passing through A S i in unit time, while (Ek) m = ~ A I~ (p~; t) A S i 

i = 1  i = 1  

is the approximate value of the total generalized charge passing through the whole surface S in unit t ime t. Hence 

E~ - -  lira I k (p~, t) A S i = i k (p', t) dS is the amount of generalized charge of the k-th flux passing through 
m ~ c o  . 

i = l  S 

the control surface S in unit time, The integral here is taken over the whole surface S of volume V. 

In the absence of sources to excite the k-th generalized charge within volume V, the flux through surface S causes 

53 < a change in the charge content amounting to Y Ck Ot 

(v) 

On the basis of the law of conservation of matter, the change of charge content in volume V equals its loss through 
surface S bounding the given volume V, i . e . ,  

- - ; f  f "OUkOt yCkdV = S S  lk(P" t )dS.  (8) 

(v) s 
Substituting the value of I~ (p', t) according to (7), we obtain 

= ff[ L, ,gradU,]aS. (9) 
(v) s "= 

Making use of M. V. Ostrogradskii's formula, we express the double integral over surface S in terms of a triple 
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integral over volume V: 

dV. (10) .s s i s  d v 
(g) 

The equality (9) takes the form 

y C a ~ dte = div Lki grad U i dV. (11) 

(1/) (V) 

Since (11) has been obtained for any arbitrary volume V, it follows that 

YCz~, ~ - -  d iv  Lk igradU i (12) 

k t ~ l  

( k = l ,  2 , . . . ,  n). 
System (12) is a system of differential equations for transfer in the presence of n interrelated fluxes of generalized 

charges. 

If Lki does not depend on the coordinates of a point in space, (12) is considerably simplified; 

OUk 
= ~ 2  a2 (13) Ot ~ ki V ~ Ui , 

i=| 
where 

W2 

V 2 U --  d i v  ( g r a d  U),  a 2 ----- Lk}/' Y C k > / 0 .  M 

Within the conductor let there be sources creating generalized charges of specific powers W 1 (x, tj, z, t), 
(x, y, z, t), . . . ,  Wn(x,  y, z, t) ; then ( l a ) t a k e s  the form 

OU1 2 v2U1 @ a~ 2 v  2U2 + - ~ a ~ n V  2 U  n -4- 0 l(X, ~, z, t), 
3t - -  a1: " " " ' 

ou2 

Ot 
- -  - a~l V 2 G + %2 V~ Uo. + . . .  + a~, V ~ U~ + 02 (x, v, z, t), 

(14) 

where 

OU. 

Ot 
- a  2 ~ a 2 V ~ U s 4 -  - + a  2 V 2 U . - f % ( x , g ,  z , t ) ,  nl ~7"U 1 @ n2 , " " ' nn 

Here as before the reciprocal Onsager relations 

0i~ = IY/k/Ck y .  

y C# a~i = y Ciai~ (15) 

must be val id. 

The set of differential equations of molecular transfer (14), together with the Onsager relations (15), describe 
mathematically the law of variation of potential functions of distribution of generalized charges with account for flux 
interaction. 

Analytical solutions of boundary value problems for various initial boundary conditions in the system of differential 
equations of parabolic type (14) are of interest in general transfer theory. Methods of solution of boundary value problems 
for (14), and analysis of these solutions expressed in dimensionless form, lead to new ways of experimental and theoreti- 
cal investigation of the mechanism of heat and mass transfer. 

Whereas in investigations of heat and mass transfer, the thermodynamics of irreversible processes permits us, 
through the agency of its phenomenological laws, to take into account certain qualitative laws observed experimentally 
and to obtain the fundamental effects from them, analytical solutions of the system now enable us to treat the quantita- 
tive aspects of transfer. 

Thus, analytical methods of the thermodynamics of irreversible processes, methods of statistical physics, and 
mathematical methods of solving the boundary value problem for system (14) may be combined together in a general 
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experimental and theoretical investigation of the mechanism of heat and mass transfer. 

A number of new boundary value problems for the system of differential equations of transfer has been solved and 
published. A method has been described by M. S. Smimovyi [1, 2] for reducing the boundary value problem for a system 
of differential equations relating to drying to the solution of the corresponding boundary value problem for a differential 
equation of the heat conduction type. This method considerably simplifies the complex solution of the basic boundary 
value problem and gives some new quantitative relations. In particular, Eq. (20) of [1] enables us to obtain the drying 
rate from the heat transfer rate by simple differentiation. 

The author of [3, 4] solved some boundary value problems for (14) by reducing a system of n differential equations 
of parabolic type to the inhomogeneous heat conduction type of equation. This method is, in essence, a generalization 
of the D' Alembert method. 

NOTATION 

Ik- f lux  of k-th generalized charge; X-general ized force; Uk-Scalar potential of generalized force Xk; Lik-  
phenomenological Onsager coefficients; V-vo lume  element of conductor; S-surface area of volume V or of control 
surface; p ' -a rb i t ra ry  point on surface S; E-quantity of generalized charge; 7 -spec i f ic  weight of conductor; Ck- spe -  
cific mass capacity of material of conducting body (conductor) with respect to k-th generalized charge; a~k-potent ia l  
conductivity of k-th generalized charge; A-Hamikonian  operator. 

REFERENCES 

1. M. S, 
2. M. S~ 
3. P .V .  
4. P .V .  

Smirnov, IFZh, no. 9, 1961. 
Smirnov, IFZh, no. 3, 1962. 
Tsoi, DAN TadzhSSR, no. 2, 1963. 
Tsoi, IFZh, no. 4, 1968. 

Tadzhik Polytechnic institute, Dushanbe 

21~ 


